

Modeling and Analysis of Structural Dynamics for a One-Tenth Scale Model NGST Sunshield

John Johnston¹ and Sebastien Lienard²

¹ NASA Goddard Space Flight Center, Mechanical Systems Analysis and Simulation Branch (Code 542), Greenbelt, MD
² Ideamech, Ramonville Saint Agne, France

> AIAA Gossamer Spacecraft Forum April 17, 2001

Overview

- Introduction
- Membrane Modeling
- Finite Element Model
- Analysis of Sunshield Dynamics
 - Modal Analysis
 - Impulse Test Simulation
- Comparison of Analysis and Experiment
- Closing Remarks

Introduction

- The Next Generation Space Telescope (NGST) will require a lightweight, deployable sunshield to provide passive cooling for optical systems.
- NGST 'yardstick' concept sunshield characteristics:
 - Central support structure
 - Deployable support booms
 - Pretensioned, thin-film membranes
- Technology development needs:
 - Modeling and Analysis
 - High confidence, test validated structural models to predict potential disturbances to observatory due to sunshield dynamics
 - · Assessment of membrane wrinkling effects
 - Testing
 - Scale model testing methodologies
 - Advanced, non-contact instrumentation
- Analysis and ground testing of a one-tenth scale model of the NGST 'yardstick' concept sunshield is being carried out to develop and validate capabilities to predict and verify sunshield structural characteristics.

NGST 'Yardstick' Concept

One-Tenth Scale Model
Sunshield Ground Test Article

One-Tenth Scale Model NGST Sunshield

Test Article Characteristics:

Overall size: 3.4 m x 1.52 m

Membranes: 4 layers of 13 micron (0.5 mil) Kapton

Support booms: Aluminum tubes

Membrane preload: 1.425 N (0.32 lbs) per corner

Schematic of Test Setup with Sunshield in Short Side Down Orientation

Sunshield Dynamic Tests

- Dynamic testing of the one-tenth scale model NGST sunshield in a vacuum environment was completed in August 2000 at NASA GSFC.
- Test objectives:
 - Determine the dynamic characteristics of the sunshield (frequencies, mode shapes, and damping) in order to provide data for model validation studies.
 - Verify the planned on-orbit test methodology for the Inflatable Sunshield In Space (ISIS) flight experiment.
 - Characterize the linearity of the system.
 - Characterize the influence of gravity.
- Types of tests:
 - Random excitation tests
 - Impulse excitation tests
 - Sine dwell tests
- Instrumentation:
 - Accelerometers
 - Force transducers
 - Laser vibrometer

Membrane Modeling

- A challenging aspect of sunshield analysis is modeling the behavior of partially wrinkled thin-film membranes.
- Finite element modeling techniques for membranes:
 - Standard elements formulations:
 - Ignore membrane wrinkling
 - · Numerical problems may occur
 - Cable network method:
 - Approximate/engineering approach for modeling wrinkled membranes
 - Based on the established principal that load transfer in wrinkled regions takes place along wrinkle lines
 - Advanced techniques:
 - Use of tension field theory and special material models to account for wrinkling effects on membrane stress distributions.
 - 'Fine-scale' analysis of wrinkling enables the prediction both stress distribution and wrinkling details (wrinkle amplitude, wavelength, etc).
- The one-tenth scale model NGST sunshield finite element model utilized in the current study was developed using the cable network modeling approach.

Finite Element Model

- Partially wrinkled, thin-film membranes modeled using 'cable network' technique
 - Developed by M. Mikulas/University of Colorado-Boulder
 - Implemented in UAI NASTRAN by S. Lienard at NASA GSFC
- Central block, support tubes, and tip hardware modeled using standard techniques
- Base-drive shaker support condition modeled (0.4 Hz rigid body translational mode of sunshield)

Full FEM

Support Structure

AIAA Gossamer Spacecraft Forum

Tip Hardware

April 17, 2001

Membrane Cable Network

- The wrinkle pattern in the longitudinal direction is dominant
 - 10 psi longitudinal stress
 - 5 psi lateral stress
- The membrane is meshed with a network of preloaded 'cables' mapped to the wrinkle pattern of the structure.
 - Longitudinal cables are oriented along the wrinkle pattern (load path)
 - Transverse cables act as a connection between cables and represent the mass distribution
 - Approximate representation of the load paths and mass distribution in the structure

Analysis of Sunshield Dynamics

- Finite element analysis of the sunshield was completed using UAI NASTRAN (Version 20.1).
- Nonlinear static analysis
 - Preloads due to constant force springs
 - Gravity loading
 - Export stiffness matrix
- Modal analysis
 - Import stiffness matrix from nonlinear static analysis
 - Calculate frequencies and mode shapes
 - Calculate modal effective mass
- Other dynamic analyses
 - Frequency Response
 - Transient Response (Impulse test simulation)

Modal Analysis Results

- UAI NASTRAN Normal Modes Analysis (SOL 3)
- Modal analysis completed for the following cases:
 - CFS preloads only
 - CFS preloads + Gravity loading with short side down orientation (-X direction)
 - CFS preloads + Gravity loading with sunshield in long side down orientation (+X direction)
- Effective mass (EFFM) calculations used to select 'significant' sunshield modes

Mode	No Gravity		Gravity Short Side Down		Gravity Long Side Down		Description
	Frequency (Hz)	EFFM (%)	Frequency (Hz)	EFFM (%)	Frequency (Hz)	EFFM (%)	
А	2.54	16.0	2.18	9.67	2.61	17.73	Long side of all membrane layers moving in-phase.
В	3.33	5.5	3.33	11.05	2.81	0.39	Short side of all membrane layers moving in-phase.
С	3.66	46.6	3.55	41.32	3.67	48.05	First long tube bending mode
D	5.51	4.9	4.71	3.64	4.79	4.31	Membrane/tube interaction mode
Е	5.71	12.8	5.54	14.54	5.55	13.27	First medium tube bending mode
F	6.63	5.9	6.43	9.49	6.32	8.91	Membrane/tube interaction mode

Modal Analysis Results – cont.

First Mode of Long Side of Membranes (F = 2.2 Hz)
Test article orientation = Short side down

Contour Plot of Out-Of-Plane Displacements

Mode Shape Animation

Modal Analysis Results - cont.

First Bending Mode of Long Tube (F = 3.5 Hz)
Test article orientation = Short side down

Contour Plot of Out-Of-Plane Displacements

Mode Shape Animation

Impulse Test Simulation

- UAI NASTRAN Transient Response Analysis (SOL 12)
 - Modal Method (0 10 Hz frequency range)
 - Modal damping (using test-derived damping values)
 - Timestep = 0.0078125 s, Number of timesteps = 2048 , Total time = 16.0 s
- Loading:
 - Static: CFS preloads, gravity
 - Dynamic: force time history at shaker/sunshield interface from ground tests
- Time domain results recovered at key locations:
 - Accelerometers
 - Laser vibrometer measurement points
 - Force transducer at shaker/sunshield interface
- Frequency domain results calculated during post-processing using MATLAB
 - Power spectral densities
 - Transfer functions
 - Input = Applied load at shaker/sunshield interface
 - Output = predicted response at accelerometer, laser measurement locations

Impulse Test Simulation Results

Frequency Domain Results

Comparison of Analysis and Experiment

Frequencies and Mode Shapes

- Analysis / Test correlation performed using Dynaview software package
 - Analytical results for preload+gravity case
 - Test results from random excitation tests
 - Orthogonality calculation used to identify mode pairs
- In general, modes dominated by support tube response correlate better than modes dominated by membrane response.

Comparison of Predicted/Measured Frequencies (Short Side Down Orientation)

Predicted (Hz)	Measured (Hz)	Difference (%)	Description
2.18	3.00	-27.33	Membrane mode
3.55	3.48	+2.01	First bending mode of long tube
5.54	5.07	+9.27	First bending mode of medium tube
6.43	5.96	+7.89	Medium tube/short side of membranes

Mode Shape Correlation

Analysis Model 2 2.18 Hz, 0.0000% Test Model 5 3.00 Hz, 4.7809%

Mode Shape Animations

- Long side of membranes
- Long tube in-phase with membranes
- Frequency = 2.2 Hz (Analysis) / 3.0 Hz (Test)

Mode Shape Correlation

Analysis Model 4 3.55 Hz, 0.0000% Test Model 6 3.48 Hz, 5.2049%

Mode Shape Animations

- First bending mode of long tube
- Long side of membranes out-of-phase with tube
- Frequency = 3.5 Hz (Analysis/Test)

Comparison of Analysis and Experiment

Impulse Test Simulation – Support Tube Response

Description	Predicted	Measured
(a) Time domain Acceleration in z direction as a function of time at the tip of the long support tube.	0.8 0.6 0.9 0.2 0.2 0.4 0.6 0.8 0.6 0.8 0.1 0.2 0.2 0.4 0.6 0.8 0.8 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9	1 0.8 long tube
(b) Frequency domainFrequency response functions for tips of long and medium support tubes.Input = drive point forceOutput = acceleration of tube tips	10 ² long tube ————————————————————————————————————	10 ² long tube medium tube 10 ³ long tube medium tube 10 ³ long tube medium tube 10 ⁴ long tube medium tube 4 f(Hz) 6 8 10

Closing Remarks

- Finite element analysis was used to predict the structural dynamic behavior of a one-tenth scale model of the NGST 'yardstick' concept sunshield.
 - Membranes modeled using approximate engineering technique that accounts for wrinkling effects.
 - Comparison of analytical predictions and test results showed good agreement for modes dominated by support tube motions, but only fair agreement for modes dominated by membrane response.

Current / Future Work:

- Development of a new membrane finite element model of the sunshield using "Iterative Membrane Properties (IMP)" method developed by Adler and Mikulas/U. Colorado-Boulder.
- Follow-on testing of one-tenth scale model sunshield.

Current WorkWrinkled Membrane FEA

Membrane wrinkling effects modeled using IMP method developed by Adler and Mikulas/U. Colorado-Boulder